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MOTIVATION

Exascale class machines will exhibit a new level of com-
plexity: they will feature an unprecedented number of cores
and threads, will most likely be heterogeneous and deeply hi-
erarchical, and offer a range of new hardware techniques (such
as speculative threading, transactional memory, programmable
prefetching, and programmable accelerators), which all have
to be utilized for an application to realize the full potential
of the machine. Additionally, users will be faced with less
memory per core, fixed total power budgets, and sharply
reduced MTBFs.

At the same time, it is expected that the complexity of
applications will rise sharply for exascale systems, both to
implement new science possible at exascale and to exploit
the new hardware features necessary to achieve exascale
performance. This is particularly true for many of the NNSA
codes, which are large and often highly complex integrated
simulation codes that push the limits of everything in the
system including language features.

To overcome these limitations and to enable users to reach
exascale performance, users will expect a new generation of
tools that address the bottlenecks of exascale machines, that
work seamlessly with the (set of) programming models on
the target machines, that scale with the machine, that pro-
vide automatic analysis capabilities, and that are flexible and
modular enough to overcome the complexities and changing
demands of the exascale architectures. Further, any tool must
be robust enough to handle the complexity of large integrated
codes while keeping the user’s learning curve low.

With the ASC program, in particular the CSSE (Computa-
tional Systems and Software Engineering) and CCE (Common
Compute Environment) projects, we are working towards a
new generation of tools that fulfill these requirements and that
provide our users as well as the larger HPC community with
the necessary tools, techniques, and methodologies required to
make exascale performance a reality.

PERFORMANCE ANALYSIS TOOLS

To reach exascale, performance tools will no longer be
a luxury for power users, but an essential infrastructure for
guiding both applications and the software stack developers
to exascale. Performance tools for exascale systems must help
developers identify shortcomings in the software stack as well
as provide on-line performance feedback to guide runtime
adaptation. As such, we require a series of tool sets that not
only provide a range of advanced analysis capabilities, but that
are intuitive and easy-to-use as well as available across a range
of platforms.

The Open|SpeedShop (O|SS) [1] project, a joint project be-
tween LANL, LLNL, SNLs and the Krell Institute, specifically
targets the ideas of ease-of-use and cross-platform availability.
Installed on most major DOE (NNSA and ASCR) laboratory
systems it provides users with rich set of performance analysis
functionality, incl. PC sampling, call stack sampling, hardware
counter experiments, as well as a wide range of tracing exper-
iments. User can apply O|SS using simple prefix commands
and can analyze the data in a comprehensive GUI.

Tools like Loba, developed at LANL, offer a different
avenue: it provides a simple tool framework that attempts
to automate the collection, evaluation, and application of
mapping heuristics for MPI applications, an issue of rising
importance on today’s multi-core/multi-socket node systems.
It features a range of mapping algorithms and uses profiling
data to generate new MPI task placements for subsequent runs
with similar communication characteristics. Experiments with
several benchmarks have shown performance improvements of
up to 16%.

DEBUGGING AND VERIFICATION TOOLS

The increased complexity and core counts of exascale sys-
tems will diminish the effectiveness of traditional interactive
debuggers. To cope with the complexity of exascale execu-
tions, application developers will need additional tools that
can help users to either automatically or semi-automatically



reduce the problem to smaller core counts or to detect the
problem itself.

The Stack Trace Analysis Tool (STAT) targets this problem
and provides is a lightweight and highly scalable mechanism
for identifying errors in code running at full scale [2]. It has
been developed in close collaboration between LLNL, the
University of Wisconsin, and the University of New Mexico,
and works on the principle of detecting and grouping similar
processes at suspicious points in a programs execution. STAT
gathers stack traces across tasks and over time and merges the
traces into a call graph prefix tree, from which it identifies the
task equivalence classes. The tool has proven effective even
at very large scales; it has demonstrated sub-second merging
latencies on 212,992 tasks [3].

In addition to traditional debuggers, users will require new
mechanisms that proactively check programs for correctness
instead of reactively having to debug them. One example
in this area is the Marmot Umpire Scalable Tool (MUST),
developed at TU-Dresden in close collaboration with LANL
and LLNL, which unites and extends the functionality of two
existing MPI runtime error detection tools, namely Marmot [4]
and Umpire [5]. Using a Generic Tool Infrastructure (GTI) [6],
developed for event driven tools like MUST, as the underlying
foundation, MUST implements a range of different correctness
checks, each targeting different correctness aspects, and dis-
tributes them across the system for efficient online checking
of the application as it executes. Violations of the use of MPI,
such as potential deadlocks, resource leaks, or mismatches
messages are detected and reported to the user.

UNDERLYING TOOL INFRASTRUCTURES

The discussion above shows that we will need sophisticated
tools to address the complexities of the target applications and
systems. Each tool will itself be a highly distributed system
and require substantial effort to implement and tune. On the
other hand, no single tool will be able solve all problems -
instead we will need the ability to create and maintain custom
tools for particular problems or target platforms.

The use of generic and separable components will be key
to overcoming these challenges: each functionally separable
part of a tool should be implemented as its own component,
which then is made available as part of a component library.
Tools can assemble these components into a full end-to-end
solution with minimal glue code. In the ideal case, tools may
even be assembled directly from components alone using a tool
construction specification (e.g., implemented as an XML file).
To realize this vision, ASC teams are currently developing
component infrastructures such PNMPI and CBTFF.

PNMPI eliminates the restriction of only being able to use a
single tool layer in the MPI profiling interface (PMPI) per ex-
ecution [7]. It can dynamically load and chain multiple PMPI
tools into a single tool stack and then interject this complete
stack between the target application and the library without
changing the view for each individual tool. Additionally, a
registration mechanism enables modules to offer services to
other modules loaded by PNMPI and thereby enables code

reuse by modularizing common tasks, like datatype flattening
or request tracking.

The Component Based Tool Framework (CBTF), jointly
developed by the Krell Institute, LLNL, LANL, ORNL,
and the Universities of Wisconsin and Maryland under joint
NNSA/ASCR funding, provides a scalable tree-based data
transport and dynamic aggregation system (CBTF-mrnet) built
on top of MRNet [8]. Users of CBTF can develop individual
analysis components and deploy them in CBTF through a
series of component networks that run on various levels of
the CBTF transport tree. Using a dataflow principle, these
component networks are used to analyze performance and
debugging data on the fly during its transport.

SUMMARY

A rich program development environment, consisting of
both comprehensive debugging and correctness tool support
on one side and performance analysis on the other side,
will be essential in reaching exascale performance. Tools like
Open|SpeedShop , Loba, STAT, and MUST are examples of
tools that contribute to this goal. The discussion, however,
also shows that tools themselves will be complex distributed
systems and we can’t afford to write each from scratch. We
will have to rely on component based tool infrastructures, such
as PNMPI and CBTF, to manage, prototype, implement, and
deploy tools.
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Abstract—As we move towards exascale, users will re-

quire more sophisticated tools to tackle the challenges

imposed by the rising complexity of both architectures and

applications. These tools must be intuitive and easy to use,

present information in a concise and scalable way, and at

the same time must scale to the full scale of the machine

and provide a robust program development environment.

Research teams at all three NNSA laboratories — LANL,

LLNL, and SNLs — are tackling these challenges and

user requirements through a wide range of tool projects

targeting both current and future architectures. In the

following we will describe some of these approaches from

all areas of tools: we will describe the performance tools

Open|SpeedShop and Loba, the debugging and correctness

tools STAT and MUST, as well as tool infrastructure

components, including the modular frameworks P
N

MPI

and CBTF.

I. MOTIVATION: WORKING TOWARDS A NEW
GENERATION OF TOOLS

Exascale class machines will exhibit a new level of
complexity: they will feature an unprecedented number
of cores and threads, will most likely be heteroge-
neous and deeply hierarchical, and offer a range of
new hardware techniques (such as speculative threading,
transactional memory, programmable prefetching, and
programmable accelerators), which all have to be utilized
for an application to realize the full potential of the
machine. Additionally, users will be faced with less
memory per core, fixed total power budgets, and sharply
reduced MTBFs.

At the same time, it is expected that the complexity of
applications will rise sharply for exascale systems, both
to implement new science possible at exascale and to
exploit the new hardware features necessary to achieve

exascale performance. This is particularly true for many
of the NNSA codes, which are large and often highly
complex integrated simulation codes that push the limits
of everything in the system including language features.

To overcome these limitations and to enable users
to reach exascale performance, users will expect a new
generation of tools that help address the bottlenecks of
exascale machines, that work seamlessly with the (set of)
programming models on the target machines, that scale
with the machine, that provide the necessary automatic
analysis capabilities, and that are flexible and modular
enough to overcome the complexities and changing
demands of the exascale architectures. Further, any tool
must be robust enough to handle the complexity of large
integrated codes, while keeping the user’s learning curve
low.

With the ASC program, in particular the CSSE (Com-
putational Systems and Software Engineering) and CCE
(Common Compute Environment) projects, we are work-
ing towards a new generation of tools that fulfill these
requirements and that provide our users as well as
the larger HPC community with the necessary tools,
techniques, and methodologies required to make exascale
performance a reality. In the following we present several
examples of our activities in the areas of performance
analysis tools, debugging and verification tools, as well
as tool infrastructures.

II. PERFORMANCE ANALYSIS TOOLS

To reach exascale, performance tools will no longer be
a luxury for power users, but an essential infrastructure
for guiding both applications and the software stack
developers to exascale. Performance tools for exascale



systems must help developers identify shortcomings in
the software stack as well as provide on-line performance
feedback to guide runtime adaptation. As such, we
require a series of tool sets that not only provide a range
of advanced analysis capabilities, but that are intuitive
and easy-to-use as well as available across a range of
platforms. In the following we illustrate two example
of performance analysis tools: Open|SpeedShop is a
performance analysis tool set that is being developed
as a portable and easy-to-use tool solution across all
ASC platforms; and Loba, a semi-automatic tool set
that helps users with MPI task placement on multi-
core/multi-socket node architectures.

A. Open|SpeedShop
Performance analysis and optimization is a critical

step in the development process of any scientific appli-
cation. Efficient and easy-to-use tool support is essential
to allow users to complete this task, yet current tools are
often targeted for the performance analysis expert, and
therefore cumbersome to use or require changes to the
compilation or execution process. This makes these tools
unattractive for application developers who often have
limited time allocated for performance optimizations.

To overcome these problems, the ASC tri-labs and
the Krell Institute, have designed Open|SpeedShop
(O|SS) [1], an open source multi platform Linux perfor-
mance tool that provides easy access to an application’s
performance profile, while not precluding more sophis-
ticated and detailed analysis found in other tools. For
this purpose it combines guided performance analysis
through graphical wizards and preconfigured detailed
analysis panels with low-level access to performance
data through scripting interfaces and Python integration.

O|SS’s performance analysis functionality includes a
set of specific Experiments that allow the user to easily
gather a variety of different performance statistics about
an application. This includes Program Counter (PC)
sampling, a light weight way to get an overview of
application performance bottlenecks; Call Stack Sam-
pling analysis, a technique to find hot call paths; Hard-
ware Performance Counters, providing access to low
level information such as cache or TLB misses; MPI
Profiling and Tracing, enabling users to detect MPI
communication bottlenecks; I/O Profiling and Tracing to
study an application’s I/O characteristics; and Floating
Point Exception (FPE) analysis to detect floating point
exceptions that can slow down applications.

The tool set offers two methods for instrumentation
and data collection: an offline option that instruments
the application at job start, produces unprocessed raw
files at runtime, and then automatically postprocesses
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Fig. 1. The O|SS data collection architecture: offline vs. online data
collection.

these files for later analysis; and an online option that
collects the data using a hierarchical overlay network
(Figure 1). While the first option typically is easier to
install and allows for less instrumentation overhead, the
second option provides advanced scalability as well as
new functionality like being able to attach to already
running applications. In both cases, though, the data
is stored in the form of a single persistent relational
database that can queried at any time after the experiment
for further analysis.

Once collected, O|SS displays the data through a set
of detailed reports that allow the user to easily relate
the performance information back to their application
source code. This information is accessible through a
comprehensive GUI from a command line interface, as
well as from within Python scripts. A sample screenshot
of O|SS’s GUI is shown in Figure 2. Additionally,
the tool set includes a series of analysis techniques,
including outlier detection, load balance analysis, and
cross experiment comparisons. In summary, O|SS’s func-
tionality provides a comprehensive set of techniques that
greatly aid in the analysis and understanding of parallel
application performance.

Open|SpeedShop currently supports all major ASC
platforms, including the TLCC and TLCC-2 cluster
systems, BG/L and BG/P (a port to BG/Q is on the
way and will be available soon), and Cray XT-4/5 and
XE-6. Additionally, O|SS has been ported to a range
of Linux distributions as well as SGI’s Altix systems.
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Fig. 2. The O|SS GUI showing per function statistics.

Within the DOE laboratories, O|SS is currently installed
on all cluster platforms at the tri-labs, LLNL’s BG/L
and BG/P installations, LANL/SNLs Cray-XE6 installa-
tions, as well as Intrepid/Challenger at ANL, Hopper at
NERSC/LBL, and Jaguar at ORNL. More information,
including extensive user documentation and tutorials, is
available at http://www.openspeedshop.org/.

B. Loba: Heuristics for Topology Aware Task Placement

Modern architectures often feature complex node ar-
chitectures and leave users with the need to optimize
node and task placements. Reordering MPI tasks to
optimize for a given set of performance criteria is a
relatively well-known technique in the high-performance
computing community to address this problem Success-
fully applying this technique, however, not only requires
an in-depth knowledge surrounding the applications mes-
saging characteristics, but also requires an understanding
about the target architecture and its topology. Loba
is a simple tool framework that attempts to automate
the collection, evaluation, and application of mapping
heuristics for MPI applications. It features a range of
mapping algorithms and uses profiling data to generate
new MPI task placements for subsequent runs with
similar communication characteristics.

Recently, LANL implemented and evaluated exper-
imental as well as already well-established mapping
techniques on Cielo, a capability-class platform for the
Advanced Simulation and Computing Program. Figure 3
shows the results for one key benchmark, the SMG2000
code [2] from the ASC Purple benchmark suite [3].
This benchmark is communication intense and therefore
highly sensitive to node and task placements. By using
an affine-3D mapping heuristics [4], Loba was able

Fig. 3. Performance improvement on SMG2000 using Loba.

to optimize the performance of SMG over the default
performance by around 16%.

III. DEBUGGING AND VERIFICATION TOOLS

The increased complexity and core counts of exascale
systems will diminish the effectiveness of traditional
interactive debuggers. To cope with the complexity of
exascale executions, application developers will need ad-
ditional tools that can help users to either automatically
or semi-automatically reduce the problem to smaller core
counts or to detect the problem itself.

In the following we illustrate two major ASC efforts
in this area tackling debugging and correctness, while
specifically addressing scalability: STAT, the Stack Trace
Analysis Tool, enables users to quickly identify groups
of processes with similar behavior as well as individual
outliers, enabling them to reduce the scale of the debug-
ging problem; and MUST, a new tool set of MPI code
verification.

A. The Stack Trace Analysis Tool (STAT)
STAT is a lightweight and highly scalable debug-

ging tool for identifying errors in code running at full
scale [5], [6]. It has been developed in close collab-
oration between LLNL, the University of Wisconsin,
and the University of New Mexico, and works on the
principle of detecting and grouping similar processes at
suspicious points in a programs execution. This allows
users to reduce the problem they are trying to debug to
only a small and tractable number of nodes by picking
representatives from each group instead of having to
debug all processes at the same time. It also automati-
cally identifies outliers, processes that cannot be grouped
and/or that behave substantially different. This is often
an indication of an erroneous execution and STAT can
aid in quickly identifying such anomalies. STAT achieves
this grouping of processes by examining the state of all
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Fig. 4. The STAT GUI.

processes in a parallel program dynamically at runtime
and by extracting stack traces, the calling sequence of
functions that lead to the current point of execution.

STAT gathers stack traces across tasks and over time
and merges the traces into a call graph prefix tree, from
which it identifies the task equivalence classes. Users
can then attach a traditional parallel debugger to a single
representative of a class with suspicious behavior or to
representatives from several classes. In either case, the
technique presents the user with much less data that is
targeted at the underlying problem.

STAT builds on scalable and portable tool infrastruc-
ture such as the MRNet tree-based overlay network [7].
As a result, it has been ported and deployed on many
high-end computing systems including Linux clusters,
BlueGene/L and P, and the Cray XT4 and 5. The tool
has also proven effective even at very large scales; it has
demonstrated sub-second merging latencies on 212,992
tasks [6].

STAT includes a powerful and intuitive Graphical User
Interface (GUI) (see Figure 4) that allows the user to
identify quickly where a bug exists in an application.
The GUI automatically can perform several operations
that analyze the state of the application and pinpoint
potential locations of a bug. For instance, it can identify
and highlight individual outliers tasks with anomalous
behavior. The heuristics on which these operations are
based reflect several years of debugging expertise and
experiences with real world bugs. For bugs that these
heuristics cannot identify, the user can manually navigate
the gathered debug information within the STAT GUI.
The user can then use the STAT GUI to correlate this
debug information to the precise source code location or
to reason about where to look for bugs using additional
tools.

STAT is available on all major ASC tri-lab production
platforms, which includes both the TLCC and TLCC-

2 cluster systems, as well as the advanced architectures
BG/L, BG/P (dawn), and Cray-XE6 (cielo). It has further
been integrated into Cray’s default software stack, which
not only makes it available on all Cray platforms, includ-
ing ORNL’s Jaguar, but also makes it a prime example
of transferring basic research work, which started as a
student intern project, to production software with an
impact beyond the ASC laboratories.

B. MUST: Scalable MPI Code Verification
The Marmot Umpire Scalable Tool (MUST) unites

and extends the functionality of two existing MPI run-
time error detection tools, namely Marmot [8] and Um-
pire [9]. Further, MUST aims at providing increased
scalability along with the ability to easily add further
correctness checks.

To achieve these goals, we developed the Generic Tool
Infrastructure (GTI) [10] as the underlying foundation.
Using GTI, the tool developer only writes the tool
analyses that GTI loads, manages, and activates. Figure 5
(left) illustrates the GTI tool development process. GTI
handles all infrastructure related tasks, which requires
the tool developer to specify which events should trigger
the analyses and the overall tool layout. GTI provides
the underlying infrastructure that reads this information
and generates all required code including code for wrap-
ping, trace record creation, data transport, and analysis
management. It itself relies on the PNMPI , which is
described in more detail in Section IV-B.

Using the abstractions of the GTI we define different
types of module to implement the necessary correctness
checks for MPI programs. These modules fall into three
different categories: correctness checks, resource track-
ers, and base services. The actual correctness checks
receive information about MPI calls that are issued by
the application and check them for conformance with the
MPI standard. The resource trackers are used to survey
the creation, destruction and state of MPI resources such
as requests and datatypes. They provide this information
to the correctness checks. Finally, the modules for base
services provide a mechanism for logging correctness
errors or other types of reports as well as identifiers for
MPI ranks and call locations. These identifiers refer to
a certain process and thread as well as to a call stack,
which can be retrieved with the StackwalkerAPI (see
Section IV-A0a). Each module specifies on which other
modules it depends. Based on this information the GTI
is able to assemble a specific and customized MUST
instance by combining the individual modules. Further,
the GTI allows modules to run on additional processes
or threads in order to offload tool computations from
the application tasks. A TBON can be specified to run

4
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Fig. 5. GTI modular instrumentation (left) and module off-loading approach (right).

distributed and hierarchical tool analyses. This is further
illustrated in Figure 5.

MUST is currently being developed at TU-Dresden
in a close collaboration with LLNL and LANL. Early
prototypes are available for testing with a first full release
expected towards the end of the year 2012. It is currently
being tested on tri-lab cluster systems.

IV. TOOL INFRASTRUCTURES

The discussion above shows that we will need sophis-
ticated tools to address the complexities of the target
applications and systems. Each tool will itself be a
highly distributed system and require substantial effort
to implement and tune. The use of generic and separable
components will be key to creating a series of tool sets
that can target all necessary functionalities needed from
tools to reach exascale, while being maintainable and
avoid re-engineering for every tool set.

In the following he highlight a series of infrastructure
components that ASC is developing. We start with basic
system components that can be used in a large variety
of tools, followed by two larger component or module
infrastructures: PNMPI , a virtualization layer for the
MPI profiling interface; and the Component Based Tool
Framework (CBTF), a modular framework to create
scalable and distributed tools.

A. Specialized Components

To aid the componentization, ASC is (co-)developing
and maintaining a series of specialized components that
are used in many tools, both with and beyond the tri-
labs. Two of the most widely used are the Stackwalker
API, an API to generate stack traces; and LaunchMON,
a set of components that help launch and manage tool
daemons in large scale parallel environments.

a) StackwalkerAPI: StackwalkerAPI is a tool com-
ponent from the DyninstAPI toolkit, supported through
collaborative efforts between the University of Wiscon-
sin, University of Maryland and LLNL. StackwalkerAPI
provides a platform-independent abstraction for collect-
ing call stacks from running threads. It can operate in
first-party or third-party modes (collecting call stacks
from either its own or other processes) and over a wide
range of platforms. As a tool component it is used as
a common-infrastructure building block for other tools
such as STAT (the Stack Trace Analysis Tools, see
Section III-A), PNMPI (see Section IV-B), MUST III-B,
Libra [11] and CBI (Cooperative Bug Isolation) [12],
[13].

In its core, StackwalkerAPI relies on a plugin mech-
anism (See Figure 6) that enables it to add callback
routines to follow individual types of stack elements.
This allows Stackwalker to be flexible and users to
easily add support for new stack types and frames as
architectures evolve, without changing the interface to
the tool. At the same time, it uses plugins to switch
between first and third party support, as well as to
integrate symbol name lookup. The latter is typically
done through Dyninst’s SymtabAPI.

StackwalkerAPI is available as part of Dyninst from
http://www.dyninst.org/ and runs on a wide variety of
platforms, including most Linux distributions, BG/L and
BG/P, and Cray-XE6.

b) LaunchMON: Many parallel tools, including
debuggers and performance analyzers, must launch and
control tool daemons. Large scale tools also often use
additional middleware daemons for scalable communi-
cation. Launching and controlling these daemons are
non trivial tasks that require an efficient, portable, secure
solution that can be reused across a wide set of tools.

LaunchMON [14] fills this gap using a general pur-
pose, distributed infrastructure. It is structured into four
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main components, which are shown in Figure 7: (1) the
LaunchMON Engine; (2) the front-end API (Launch-
MON FE API); (3) the back-end API (LaunchMON
BE API); and (4) the middleware API (LaunchMON
MW API). The LaunchMON FE and BE APIs provide
information about application processes and scalably
launch tool daemons on remote nodes. Similarly, the
LaunchMON FE and MW APIs enable scalable launch-
ing and connection of tool daemons. The LaunchMON
Engine interacts with the resource manager to determine
when, where and how to perform the services of the
other components. A compact application layer network
protocol, LMONP, enables interactions between all of
LaunchMON’s components.

The main component, the LaunchMON Engine, di-
rectly leverages the services offered by the underlying
resource manager on the target platform. Thus, it uses
efficient platform specific mechanisms to launch and to
manage daemons that have accepted security properties.
Tool developers can control this process with a set of
libraries and APIs from the front-end tool, the tool
daemons running on the application nodes and, if ap-
plicable, middleware nodes. The latter two APIs include
simple communication mechanisms that are useful for
tool coordination.

LaunchMON is developed at LLNL and available
as open source on SourceForge at http://sourceforge.
net/projects/launchmon/. It currently has been ported to
BG/L, BG/P, and BG/Q systems, Cray XT-4/5 and XE-
6 machines, as well as Linux clusters running SLURM
or OpenRTE as their resource manager. LaunchMON is
used as the base component for STAT (Section III-A)
and is targeted for use in CBTF (Section IV-C) and
Open|SpeedShop (Section II-A).

B. PNMPI - Virtualizing the MPI Profiling Interface
Most tools targeting MPI rely on the MPI Profiling

Interface (PMPI), which allows tools to transparently
intercept invocations to MPI routines and with that to
establish wrappers around MPI calls to gather execution
information. However, the usage of this interface is
limited to a single tool. PNMPI eliminates the restriction
of a single PMPI tool layer per execution [15]. It can
dynamically load and chain multiple PMPI tools into a
single tool stack and then interject this complete stack
between the target application and the library without
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changing the view for each individual tool. It enables
the user to combine arbitrary MPI tools without having
to reimplement them. Figure 8 illustrates the principle
behind PNMPI and shows how it is possible to collect
both hardware data (such as network counters) and com-
munication data (such as MPI traces) in two independent
modules concurrently.

These new capabilities can be used to compose new
tools directly from existing tools or out of a library
of generic services. A registration mechanism enables
modules to offer services to other modules loaded by
PNMPI and thereby enables code reuse by modularizing
common tasks, like datatype flattening or request track-
ing, without having to recode them in every tool. Further,
a particular class of modules, Switch Modules, support
both external steering and the multiplexing of existing
tools to dynamic subsets of MPI jobs by providing the
ability to dynamically switch between stacks for each
intercepted MPI event. This allows users, e.g., to only
forward a targeted subset of MPI calls (e.g., all calls with
floating point data in the message, messages on certain
communicators, or of certain size) to a profiler.

PNMPI is developed at LLNL and available in open
source from github at https://github.com/schulzm/PnMPI
(version 1.4 scheduled for beginning of April 2012) and
has been tested on a variety of Linux clusters as well
as BG/P and Cray-XT systems. It forms the foundation
for MUST (see Section III-B); AutomaTeD [16], an
stochastical debugging tool for large scale MPI jobs; and
Talanton, an asynchronous load balancing framework,
currently under development at LLNL and Texas A&M
University.

C. The Component-Based Tool Framework (CBTF)
The discussion above shows that we will need sophis-

ticated tools to address the complexities of the target
applications and systems. Each tool will itself be a
highly distributed system and require substantial effort
to implement and tune. On the other hand, no single tool
will be able solve all problems - instead we will need the
ability to create and maintain custom tools for particular
problems or target platforms.
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Fig. 9. The Structure of the Component-Based Tool Framework

The use of generic and separable components will be
key to overcoming these challenges: each functionally
separable part of a tool should be implemented as its own
component, which then is made available as part of a
component library. Tools can assemble these components
into a full end-to-end solution with minimal glue code. In
the ideal case, tools may even be assembled directly from
components alone using a tool construction specification
(e.g., implemented as an XML file).

To realize this vision, we are currently developing the
Component Based Tool Framework (CBTF) [17], which
is conceptually shown in Figure 9. It provides a scal-
able tree-based data transport and dynamic aggregation
system (CBTF-mrnet) built on top of MRNet [18]. It
transports data from the application from its creation
point at the application level, up the MRNet tree to the
client tool, where the user operate on or view the data.

Users of CBTF can develop individual analysis com-
ponents and deploy them in the CBTF infrastructure
through a series of component networks that run on
various levels of the CBTF transport tree. Using a
dataflow principle, these component networks are used
to analyze performance and debugging data on the fly
during its transport. These component networks allow
for analysis and processing of the data items passed
between the nodes of the network and provide the user
of the transport mechanism the ability to filter the data as
it is being transported. Filtering, in this context, means
performing some type of data transformation on the data
being passed to the filter and outputting the transformed
data out of the filter.

Overall, CBTF will not only avoid stovepipe solutions
and enable interoperability between tools, but it will also
enable quick tool prototyping and the creation of custom
or even application specific tools. This will allow tool
providers to quickly react to new, unpredictable problems
and provide users with quick and direct support without
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having to create specialized tools from scratch.
Work on the CBTF is done under joint DOE

ASC/NNSA and ASCR funding through the project
entitled “Building a Community Infrastructure for Scal-
able On-Line Performance Analysis Tools Around
Open/SpeedShop” (ER25935). Early prototype software
is available on request and the team is targeting a public
release later in 2012. As a first conceptual study, the
Krell Institute is re-implementing a modularized version
of Open|SpeedShop (Section II-A) on top of CBTF,
which will allow us to scale O|SS to next generation
machines, starting with LLNL’s Sequoia. In addition, the
team is working on a set of administrative tools that
leverage CBTF and its scalability, opening the door to
supporting additional important functionality presently
not covered by most tool frameworks or tool sets.

V. LOOKING FORWARD

To make exascale computing tractable, users will
need sophisticated tools to maneuver the increasingly
complex architecture and application space. This will
include more scalable approaches for debugging and
performance analysis, but will also reach into new areas
such as memory efficiency analysis and optimization
and power reduction. To provide these capabilities, tools
themselves must face a series of challenges, be highly
scalable, and be fault tolerant.

Delivering the sophisticated tools that will be required
for exascale platforms will require a united effort by the
tools community. The community can no longer afford
to create vertically integrated stovepipe implementations;
instead the community will need to establish components
that can be shared across multiple tools, support the rapid
development of new tools, and enable tool capabilities
to be dynamically tailored in response to the system and
application state and the problems at hand.
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